2008年以来地图学眼动与视觉认知研究新进展

摘要:

地图是人类日常生活中不可或缺的工具。地图认知作为研究人对地图的感知、学习、记忆、推理和决策的科学,一直以来是地图学基础理论的重要内容。作为地图认知研究的核心,近年来地图视觉认知在相关学科(如心理学、认知科学和计算机视觉)和新的研究手段(如眼动跟踪、脑电和核磁)的促进下取得了一系列新的研究成果。尤其是眼动跟踪方法作为地图视觉认知研究的重要手段之一,越来越受到研究者的关注,为地图视觉认知研究的定量化、实用化提供了有力支撑。本文系统地梳理了2008年以来眼动跟踪方法在地图视觉认知研究中取得的新进展,并将其归纳为6个发展趋势,分别包括:① 刺激材料:从静态地图到动态交互地图;② 研究范围:从地图认知到地图空间认知;③ 实验环境:从实验室环境到真实环境;④ 地图维度:从二维地图到三维地图;⑤ 个体差异:从单一维度到多维度;⑥ 研究目的:从规律探究到实践应用。本文最后总结了未来研究面临的挑战、难点和可能的解决方法,期望能在地图视觉认知研究中起到抛砖引玉的作用。

引用本文

 董卫华, 廖华, 詹智成, 刘兵, 王圣凯, 杨天宇. 2008年以来地图学眼动与视觉认知研究新进展[J]. 地理学报, 2019, 74(3): 599-614.

Weihua DONG, Hua LIAO, Zhicheng ZHAN, Bing LIU, Shengkai WANG, Tianyu YANG. New research progress of eye tracking-based map cognition in cartography since 2008[J]. Acta Geographica Sinica, 2019, 74(3): 599-614.

链接:http://www.geog.com.cn/CN/10.11821/dlxb201903015

北京市甲型H1N1流感对气象因子的时空响应

摘要:

为研究北京市甲型H1N1流感对气象因子的时空响应规律,本文结合地理探测器及空间自相关分析方法,分析北京市甲型H1N1流感的时空分布情况,基于地理加权回归(GWR)模型,建立北京市甲型H1N1流感与平均风速、降雨量、平均湿度以及平均温度之间的回归模型。结果表明,降雨量对流感传播的影响不显著,平均风速与流感的传播主要呈现正相关,平均相对湿度与平均温度与流感的传播主要呈现负相关,其中,平均相对湿度的影响更为复杂。时间上,在流感感染人数快速上升的阶段,各气象因子的影响程度较为显著,而在流感传播速度减慢的阶段,气象因子的影响减弱;空间上,各气象要素对流感传播的影响在北京市4大功能分区上存在空间分异性,这与地区地形、风带、局地气候等因素有关。

引用本文

杨斯棋,邢潇月,董卫华,李帅朋,詹智成,王全意,杨鹏,张奕. 北京市甲型H1N1流感对气象因子的时空响应[J]. 地理学报, 2018, 73(3): 460-473.

YANG Siqi,XING Xiaoyue,DONG Weihua,LI Shuaipeng,ZHAN Zhicheng,WANG Quanyi,YANG Peng,ZHANG Yi. The spatio-temporal response of influenza A (H1N1) to meteorological factors in Beijing[J]. Acta Geographica Sinica, 2018, 73(3): 460-473.

链接:http://www.geog.com.cn/CN/10.11821/dlxb201803006

Real-time forecasting of hand-foot-and-mouth disease outbreaks using the integrating compartment model and assimilation filtering

Abstract: Hand-foot-and-mouth disease (HFMD) is a highly contagious viral infection, and real-time predicting of HFMD outbreaks will facilitate the timely implementation of appropriate control measures. By integrating a susceptible-exposed-infectious-recovered (SEIR) model and an ensemble Kalman filter (EnKF) assimilation method, we developed an integrated compartment model and assimilation filtering forecast model for real-time forecasting of HFMD. When applied to HFMD outbreak data collected for 2008–11 in Beijing, China, our model successfully predicted the peak week of an outbreak three weeks before the actual arrival of the peak, with a predicted maximum infection rate of 85% or greater than the observed rate. Moreover, dominant virus types enterovirus 71 (EV-71) and coxsackievirus A16 (CV-A16) may account for the different patterns of HFMD transmission and recovery observed. The results of this study can be used to inform agencies responsible for public health management of tailored strategies for disease control efforts during HFMD outbreak seasons.

To site this paper:

Zhan, Z.; Dong, W.; Lu, Y.; Yang, P.; Wang, Q.; Jia, P. Real-time forecasting of hand-foot-and-mouth disease outbreaks using the integrating compartment model and assimilation filtering. Scientific Reports 2019, 9, 2661.

doi:10.1038/s41598-019-38930-y

Influence of scale on cognition of spatial differentiation regularities of population maps

Abstract: While population maps are important tools for people to perceive the regularities of population distribution, different scales of population maps cause map readers’ cognitive difference in the regularities of spatial distribution of population. In this paper, eye movement parameters such as number of fixations, fixation duration and number of correct answers were selected in the population map cognitive experiment by eye movement tracking to test the significance of the difference, and the results were analyzed from the perspective of spatial differentiation regularities. By exploring the influence of different scales including province and county (city) on map readers’ cognition of the distribution regularities of population, it is concluded that different scales of population maps have a significant impact on readers’ perception based on the significant difference analysis. When perceiving the characteristics of spatial distribution of population and the population quantity, more details and information are provided by county (city)-scale population maps, which is beneficial to readers’ understanding of the spatial differentiation regularities of population, with less average number of fixations, shorter average fixation duration, more correct number of answers for each question and higher cognitive efficiency. The impact of scale on the cognition of the population spatial distribution and the population size was discussed. The acquired cognitive rules of the scale can be used in designing the demographic maps and shortening readers’ cognition time, which is convenient for readers to extract valid information from the demographic maps, thus to improve the map usability. Besides, through the analysis of eye movement parameters like the fixations points, fixation time and number of correct answers, as well as the significance test, quantitative researches of the scale effects on the population distribution were carried out. The perspective drawing of the fixations hotspot can be used to visualize the cognitive spatial differentiation of the readers. And the results are no longer limited to the simple qualitative expression, which is of great significance for the use of different scales of demographic maps to express population distribution characteristics and regularities. In addition to adopting the hierarchical mapping method to draw the population maps, this thesis also has conducted experiments on the readers’ cognition of the spatial distribution regularities of population with different population density maps at different scales. Since it can reflect the population distribution more precisely and more visually, the results of this research may be further improved. And in the further work, the above population map needs further studying.

To site this paper:

Zhang, W.; Zhao, S.; Zhang, D.; Dong, W. Influence of scale on cognition of spatial differentiation regularities of population maps. Journal of Geoinformation Science, 2018,20(10):1396-1402.

doi:10.12082/dqxxkx.2018.180080

Using eye tracking to explore the impacts of geography courses on map-based spatial ability

Abstract: As part of geography education, geography courses play an important role in the development of spatial ability. However, how geography courses affect map-based spatial ability has not been well documented. In this study, we use an eye-tracking method to explore the impact of geography courses on map-based spatial ability. We recruited 55 undergraduates from Beijing Normal University (BNU) to attend the map-based spatial ability test before and after six-month geography courses arranged by the Faculty of Geographical Science, BNU. The results show that the participants’ map-based spatial ability significantly improved after taking the geography courses; specifically, accuracy increased by 22.3% and response time decreased by 14.7% after training. We analysed two types of eye-movement behaviour; in terms of processing measures, the fixation duration of the topographic map decreased by 18.4% and the fixation distribution was more concentrated after training, and in terms of matching measures, participants have more switch times per second for both photographed scenes and topographic maps. Switch times between options decreased by 48.2%, which is a notable decrease. These empirical results are helpful for the design of geography courses that improve map-based spatial ability.

To site this paper:

Dong, W.; Ying, Q.; Yang, Y.; Tang, S.; Zhan, Z.;  Liu, B.; Meng, L. Using Eye Tracking to Explore the Impacts of Geography Courses on Map-based Spatial Ability. Sustainability 201911(1), 76.

doi: https://doi.org/10.3390/su11010076

User Experience Design for Mobile Cartography: Setting the Agenda

Beijing, China | July 11 & 12, 2019

Position Paper Deadline: 1 February 2019

Organizers

Purpose

The ICA Commissions on Cognition, LBS, VA, and Use are pleased to announce a joint workshop to outline a research agenda on Mobile Map UX. Since their first description in the cartographic literature (Zipf 2002, Reichenbacher 2001, 2004, Meng et al. 2005, Gartner et al. 2007), interactive mapping applications drawing on location-based services and mobile technologies have fundamentally transformed the way that people experience place. Accordingly, established tenets of cartography need to be reexamined and updated for the mobile platform. Further, new cartographic design strategies are needed for mobile maps to ensure a productive and satisfying user experience (UX).

Energy is surging around mobile in cartography and related fields (Huang et al. 2018), with extant research covering egocentric design (van Elzakker et al. 2009), mobile icon designs (Stevens et al. 2013), adaptive and responsive designs (Griffin et al. 2017), context-awareness (Huang 2016), situated learning (Roth et al. 2018), citizen science (Haklay 2013), and mobile design ethics (Wilson 2012, Ricker et al. 2014). Recent work also includes new educational materials on mobile cartography for classroom instruction (e.g., Muehlenhaus 2013; Huang & Gao 2018; Ricker & Roth 2018).

Position Papers

This workshop builds upon the successful ICA joint workshops and special issues on Big Challenges in Interactive Cartography and Location Based Services to develop a research agenda for Mobile Map UX. To this end, we solicit 2-page position papers proposing emerging issues and pressing needs regarding Mobile Map UX. We encourage position statements from multiple sectors, including academia, industry, and government. Considerations, opportunities, and challenges of mobile map UX for discussion include, but are not limited to:

  • New Data Services: New geotagged big data streams and context-aware services building upon these streams.
  • New Technology: New mobile hardware (e.g., smartphones, UAVs, augmented reality, web environment), critical mobile infrastructure (and design constraints therein), and emerging mobile use cases (e.g., in-flight, autonomous vehicles and interfaces thereof).
  • New Map Designs: Novel map representations, emerging perceptual and cognitive considerations, and adaptive and responsive map designs across devices.
  • New Map Interfaces: New interface designs, including natural metaphors, augmented-/avatar-based interactions, and operator functionality.
  • New Analytical Methods: New approaches for scalable spatial analysis that are designed to support mobile mapping.
  • New Evaluation Methodologies: New methods and tools designed for or applied to studying mobile user experiences.
  • Broader Impacts: New forms of scholarly and citizen participation in science, education, and policy, as well as ethical considerations for the design and use of mobile maps.

Format

The workshop will cross two days, the first focused on student engagement and establishing common ground on topics related to Mobile Map UX and the second on developing a working research agenda for Mobile Map UX (capped registration).

Day #2 papers should be 2-pages and focus on “big problems”, or key research challenges and opportunities, related to the dimensions of Mobile Map UX listed above. Please submit your 2-page white paper in the CHI Archive Format. Please use positions papers from the 2015 workshop as examples for reference (available for download the bottom of the page). Position papers will be peer-reviewed by the organizing committee based on intellectual merit, scope and timeliness, and engagement with new literature and technology.

July 11: Overview & Training Workshops (recorded/targeted towards students)

  • 8:30-9:00: Arrival, Coffee
  • 9:00-10:30: User Experience Design (Robert Roth)
  • 10:30-11:00: Break
  • 11:00-12:30: Location-based Services (Haosheng Huang)
  • 12:30-14:00: Lunch
  • 14:00-15:30: Mobile Map Design (Britta Ricker)
  • 15:30-16:00: Break
  • 16:00-17:00: Discussion & Day #2 Planning
  • 18:00: Dinner

July 12: Lightning Talks and Research Agenda

  • 8:30-9:00: Arrival, Coffee
  • 9:00-10:00: Lightning Talks I
  • 10:00-10:30: Discussion
  • 10:30-11:00: Break
  • 11:00-12:00: Lightning Talks II
  • 12:00-12:30: Discussion
  • 12:30-14:00: Lunch / Commission Meetings
  • 14:00-15:00: RA Formulation/Organization
  • 15:00-16:30: Breakout
  • 16:30-17:00: Wrap-up and Next Steps
  • 18:00: Dinner

Venue:

The Beijing Normal University (BNU) Faculty of Geography was founded in 1910 and is one of the premier institutions for cartography and mapping sciences in China. BNU is located between the 2nd and 3rd city rings and is within 2km of multiple metro lines. BNU has graciously offered to provide space and coffee, as well as assistance with visas. Lodging is available on campus at the Jingshi Hotel, with additional options off campus within walking distance. The local organizers have arranged a block of rooms at a discount rate. Please email  Mr. YANG Tianyu (yang_ziy@mail.bnu.edu.cn) for your reservation, naming the workshop as your reason for the visit.

Timeline:

  • 15 November 2018: Announcement Posted
  • 1 February 2019: Deadline for 2-page Position Papers (sent to reroth@wisc.edu)
  • 1 March 2019: Notification of Accepted Papers & Preliminary Schedule; Registration Opens
  • 1 June 2019: Deadline to Register (no cost)

References:

  • Gartner, G., D.A. Bennett, and T. Morita. 2007. Towards ubiquitous cartography. Cartography and Geographic Information Science 34 (4): 247-257.
  • Griffin, A.L., T. White, C. Fish, B. Tomio, H. Huang, C.R. Sluter, J.V.M. Bravo, S.I. Fabrikant, S. Bleisch, M. Yamada, and P. Picanço. 2017. Designing across map use contexts: A research agenda. International Journal of Cartography, 3(Sup1), 61-89.
  • Haklay M. 2013. Citizen Science and Volunteered Geographic Information: Overview and Typology of Participation. In: Sui D., Elwood S., Goodchild M. (eds) Crowdsourcing Geographic Knowledge. Springer, Dordrecht.
  • Huang, H. 2016. Context-Aware Location Recommendation Using Geotagged Photos in Social Media. ISPRS International Journal of Geo-Information 5(11): 195, doi:10.3390/ijgi5110195.
  • Huang, H., and Gao, S. (2018). Location-Based Services. The Geographic Information Science & Technology Body of Knowledge (1st Quarter 2018 Edition), John P. Wilson (Ed). doi: 10.22224/gistbok/2018.1.14
  • Huang, H., G Gartner, J.M. Krisp, M. Raubal, and N. Van de Weghe. Location based services: Ongoing evolution and research agenda. Journal of Location Based Services. 
  • Muehlenhaus I. 2013. Web Cartography: Map Design for Interactive and Mobile Devices. Boca Raton, FL: CRC Press.
  • Meng, L., A. Zipf, and T. Reichenbacher. 2005. Map-based mobile services: Theories, methods, and implementations. Berlin: Springer.
  • Reichenbacher, T. 2001. Adaptive concepts for a mobile cartography. Journal of Geographical Sciences 11 (1):43–53.
  • Reichenbacher, T. 2003. Adaptive methods for mobile cartography. Paper presented at 21st International Cartographic Conference, Durban, South Africa, August 10.
  • Ricker, B., S. Daniel, and N. Hedley. 2014. Fuzzy boundaries: Hybridizing location-based services, volunteered geographic information, and geovisualization literature. Geography Compass 8 (7):490–504.
  • Ricker, B., and Roth, R. E. (2018). Mobile Maps and Responsive Design. The Geographic Information Science & Technology Body of Knowledge (2nd Quarter 2018 Edition), John P. Wilson (Ed)..
  • Roth R.E., S. Young, C. Nestel, C.M. Sack, B. Davidson, V. Knoppke-Wetzel, F. Ma, R. Mead, C. Rose, and G. Zhang. 2018. Global landscapes: Teaching globalization through responsive mobile map design. The Professional Geographer 70 (3): 395-411.
  • Stevens, J.E., A.C. Robinson, and A.M. MacEachren. 2013. Designing map symbols for mobile devices: Challenges, best practices, and the utilization of skeuomorphism. In: Proceedings of the International Cartographic Conference, Dresden, Germany, August 28.
  • Zipf, A. 2002. User-adaptive maps for location-based services (LBS) for tourism. Paper presented at Information and Communication Technologies in Tourism, Innsbruck, Austria.
  • van Elzakker, C. P. J. M., I. Delikostidis, and P. J. M. van Oosterom. 2009. Field-based usability evaluation methodology for mobile geo-applications. The Cartographic Journal 45 (2):139–49.
  • Wilson, M.W. 2012. Location-based services, conspicuous mobility, and the location-aware future. Geoforum 43 (6):1266–75.

Assessing map-reading skills using eye tracking and bayesian structural equation modelling

Abstract: Map reading is an important skill for acquiring spatial information. Previous studies have mainly used results-based assessments to learn about map-reading skills. However, how to model the relationship between map-reading skills and eye movement metrics is not well documented. In this paper, we propose a novel method to assess map-reading skills using eye movement metrics and Bayesian structural equation modelling. We recruited 258 participants to complete five map-reading tasks, which included map visualization, topology, navigation, and spatial association. The results indicated that map-reading skills could be reflected in three selected eye movement metrics, namely,the measure of first fixation, the measure of processing, and the measure of search. The model fitted well for all five tasks, and the scores generated by the model reflected the accuracy and efficiency of the participants’ performance. This study might provide a new approach to facilitate the quantitative assessment of map-reading skills based on eye tracking.

To site this paper:

Dong, W.; Jiang, Y.; Zheng, L.; Liu, B.; Meng, L. Assessing Map-Reading Skills Using Eye Tracking and Bayesian Structural Equation Modelling. Sustainability 201810, 3050.

doi:https://doi.org/10.3390/su10093050

Using eye tracking to explore differences in map-based spatial ability between geographers and non-geographers

Abstract: In this article, we use eye-tracking methods to analyze the differences in spatial ability between geographers and non-geographers regarding topographic maps, as reflected in the following three aspects: map-based spatial localization, map-based spatial orientation, and map-based spatial visualization. We recruited 32 students from Beijing Normal University (BNU) and divided them into groups of geographers and non-geographers based on their major. In terms of their spatial localization ability, geographers had shorter response times, higher fixation frequencies, and fewer saccades than non-geographers, and the differences were significant. For their spatial orientation ability, compared to non-geographers, geographers had significantly lower response times, lower fixation counts and fewer saccades as well as significantly higher fixation frequencies. In terms of their spatial visualization ability, geographers’ response times were significantly shorter than those of non-geographers, but there was no significant difference between the two groups in terms of
fixation count, fixation frequency or saccade count. We also found that compared to geographers, non-geographers usually spent more time completing these tasks. The results of this study are helpful in improving the map-based spatial ability of users of topographic maps.

To site this paper:

Dong, W.; Zheng, L.; Liu, B.; Meng, L. Using Eye Tracking to Explore Differences in Map-Based Spatial Ability between Geographers and Non-Geographers. ISPRS Int. J. Geo-Inf. 20187, 337.

doi:https://doi.org/10.3390/ijgi7090337

Using eye tracking to evaluate the usability of flow maps

Abstract: Flow maps allow users to perceive not only the location where interactions take place, but also the direction and volume of events. Previous studies have proposed numerous methods to produce flow maps. However, how to evaluate the usability of flow maps has not been well documented. In this study, we combined eye-tracking and questionnaire methods to evaluate the usability of flow maps through comparisons between (a) straight lines and curves and (b) line thicknesses and color gradients. The results show that curved flows are more effective than straight flows. Maps with curved flows have more correct answers, fixations, and percentages of fixations in areas of interest. Furthermore, we find that the curved flows require longer finish times but exhibit smaller times to first fixation than straight flows. In addition, we find that using color gradients to indicate the flow volume is significantly more effective than the application of different line thicknesses, which is mainly reflected by the presence of more correct answers in the color-gradient group. These empirical studies could help improve the usability of flow maps employed to visualize geo-data.

To cite this paper:

Dong, W *.; Wang, S. *; Chen, Y.; Meng, L. Using Eye Tracking to Evaluate the Usability of Flow Maps. ISPRS Int. J. Geo-Inf. 20187, 281. doi: https://doi.org/10.3390/ijgi7070281

Inferring user tasks in pedestrian navigation from eye movement data in real-world environments

Abstract: Eye movement data convey a wealth of information that can be used to probe human behaviour and cognitive processes. To date, eye tracking studies have mainly focused on laboratory-based evaluations of cartographic interfaces; in contrast, little attention has been paid to eye movement data mining for real-world applications. In this study, we propose using machine-learning methods to infer user tasks from eye movement data in real-world pedestrian navigation scenarios. We conducted a real-world pedestrian navigation experiment in which we recorded eye movement data from 38 participants. We trained and cross-validated a random forest classifier for classifying five common navigation tasks using five types of eye movement features. The results show that the classifier can achieve an overall accuracy of 67%. We found that statistical eye movement features and saccade encoding features are more useful than the other investigated types of features for distinguishing user tasks. We also identified that the choice of classifier, the time window size and the eye movement features considered are all important factors that influence task inference performance. Results of the research open doors to some potential real-world innovative applications, such as navigation systems that can provide task-related information depending on the task a user is performing.

 To cite this paper:
Hua Liao, Weihua Dong*, Haosheng Huang, Georg Gartner & Huiping
Liu (2018): Inferring user tasks in pedestrian navigation from eye movement data in real-world environments. International Journal of Geographical Information Science: 1-25. doi: https://doi.org/10.1080/13658816.2018.1482554